

Published on Web 10/26/2004

Effects of H₂O and D₂O on Polyproline II Helical Structure

Brian W. Chellgren and Trevor P. Creamer*

Center for Structural Biology, Department of Molecular and Cellular Biochemistry, University of Kentucky, 800 Rose Street, Lexington, Kentucky 40536-0298

Received July 29, 2004; E-mail: Trevor.Creamer@uky.edu

In this work we show that D_2O stabilizes the left-handed polyproline II (P_{II}) helical conformation of peptides relative to H_2O . The interaction of solvent with a polypeptide chain is one of the primary factors controlling protein folding and stability. In biologically relevant systems, this solvent is most often water. Estimates of the effects of water on peptide folding can be obtained from solvent perturbation experiments. The simplest perturbant for H_2O water is its isotopic D_2O form. D_2O has a greater average number of hydrogen bonds per molecule and a larger entropic cost for solvating molecules than H_2O .¹ D_2O decreases the enthalpy of unfolding in proteins, though stability is largely unchanged.² The solvation of peptides known to form P_{II} helices with D_2O increases their propensity to adopt the P_{II} conformation relative to H_2O as the solvent.

The P_{II} structure is a left-handed 3₁ helix with ideal backbone dihedral angles around $\phi = -75^{\circ}$ and $\psi = +145^{\circ}$.³ It has been shown using NMR and CD spectroscopy that a seven-residue alanine peptide adopts the P_{II} conformation in an aqueous environment.⁴ Other work has shown that alanine possesses significant P_{II} character in situations that preclude α -helix formation.⁵⁻⁷ Under such conditions, it is believed that backbone solvation favors P_{II} helix formation.^{4,5,8,9} The side chain of alanine is thought to be small enough not to interfere with solvation. The mechanism of backbone solvation is not fully understood but is believed to be more complex than just solvent accessibility.^{8,10-13}

Interactions between solvent and the peptide backbone are believed to play a major role in non-proline residues adopting the P_{II} conformation.^{4,6,8,14,15} Pappu and co-workers have hypothesized that the P_{II} conformation arises as a result of minimization of intrapeptide steric conflicts and favorable interactions with solvent that compensate for attractive intrapeptide interactions.¹¹ Kentsis et al.¹² and Mezei et al.¹³ recently reached similar conclusions. Others have suggested that bridging water molecules are responsible for an alanine dipeptide adopting the P_{II} conformation.¹⁰

These models are tested using a host–guest system consisting of peptides of sequence acetyl-(Pro)₃-X-(Pro)₃-Gly-Tyr-NH₂, where X is one (A), three (A3), five (A5), or seven (A7) alanines or one (V) or three (V3) valines. The N- and C-termini were acetylated and aminated, respectively, to remove strong electrostatic interactions, and the C-terminal tyrosine was included for concentration determination.¹⁶ The proline-based host system aids with solubility.^{7,9} It should be noted that a residue followed by a proline residue is restricted to the β -region of (ϕ,ψ) space due to steric constraints.¹⁷ Since it is energetically more costly to disrupt the bulk structure of D₂O than H₂O, examination of these peptides in both solvents reveals the relationship between disruption of solvent structure and propensity to adopt the P_{II} conformation. Peptides were obtained from Peptidogenic Research and Co., purified, and examined using circular dichroism (CD) as described in previous work.⁹

CD spectra of peptides containing seven alanines or a single valine guest residue, in D₂O and H₂O, are shown in Figure 1. The

Figure 1. CD spectra of peptides in D₂O and H₂O, collected at 5 °C.

spectrum for each peptide clearly indicates the presence of the P_{II} conformation. These spectra possess positive bands around 224–228 nm and negative bands around 197–205 nm, hallmarks of the P_{II} helical conformation. The P_{II} helix is the only secondary structure with a positive band in this region,¹⁸ so we use this as a measure of the conformation. The P_{II} CD bands move to lower wavelengths as more non-proline residues are added to the host peptide, a result of the different absorbance properties of primary, secondary, and tertiary amides.¹⁸ The bands can also shift to higher or lower wavelengths due to contributions from other secondary structures. This is likely the reason for the shifts between identical peptides in D₂O and H₂O seen in Figure 1.

Due to steric effects of prolyl rings, the first, second, fourth, and fifth prolines in each peptide are restricted to the P_{II} region of (ϕ, ψ) space.¹⁹ As a result, CD spectra presented here possess a base P_{II} content that is independent of the effects of guest residues. The heights of the positive bands in the CD spectra decrease as the number of alanine guest residues is increased, indicating that the P_{II} content decreases (Figure 2). Previous work demonstrated that valine guest residues strongly disfavor the P_{II} conformation, so the P_{II} -like CD signals for V and V3 in H₂O in Figure 2 are primarily due to the host peptide prolines.^{6,7}

On the basis of the results of the solvent– P_{II} interaction work of Pappu and co-workers,¹¹ we hypothesize that D₂O would stabilize P_{II} helices relative to H₂O. An interpretation of the results of Pappu and co-workers is that the P_{II} conformation is favored by solvent, in part because it disrupts bulk water less than other secondary structures.¹¹ D₂O is known to be more ordered than H₂O with a greater energy requirement for solvating solutes,¹ so minimizing the disruption of bulk water structure would have a greater effect in D₂O.

The heights of the positive bands in Figure 2 are consistently higher for peptides in D_2O versus those in H_2O , indicating a

Figure 2. Heights of the positive bands from CD spectra collected at 5 °C in H₂O and D₂O for peptides examined in this work.

Figure 3. Height of the positive band in the CD spectra of A7 at 5 °C as a function of D₂O concentration.

consistently higher PII content. This predilection for PII helix grows in a nonlinear fashion with D₂O content, as indicated in Figure 3. This is consistent with the nonlinear behavior of the properties of H₂O/D₂O mixtures.²⁰ The differences between H₂O and D₂O vary by peptide, indicating a sequence dependence, and are larger than error. Alanine has an intrinsically high P_{II}-forming propensity,^{4-7,9} which explains the small difference between the PII content of the peptide in H₂O and D₂O. Valine has a low propensity to adopt the P_{II} conformation,^{6,7,9} allowing for a larger D₂O effect on peptide structure.

Figure 4 shows the P_{II} content, as indicated by the height of the positive CD band, of the A7 peptide decreases linearly with temperature in both D₂O and H₂O. At all temperatures the peptide has a higher P_{II} content in D_2O . The difference in A7 P_{II} content in D₂O and H₂O decreases with increasing temperature, indicating a convergence of the structuring properties of the two solvents, although the basis for this is not clear.

Experiments demonstrating a difference in peptide conformation in H₂O and D₂O are of great importance. Researchers exploring

Figure 4. Heights of the positive bands in the CD spectra of A7 in D2O and H₂O as a function of temperature.

peptide and protein structure using NMR, VCD, IR, and Raman spectroscopy use samples solvated in part or in whole by D₂O. D₂O favors P_{II} structure, so the results of these experiments will have a bias toward that conformation. Although the bias is small, it is significant, particularly in the case of valine, which has one of the lowest propensities to adopt the P_{II} conformation. The P_{II} structuring effect of D₂O supports the hypothesis of Drozdov et al.¹¹ and the computations of Kentsis et al.¹² and Mezei et al.¹³

Acknowledgment. The authors thank Dr. Rick McCann for use of his spectrophotometer, Shelly Whittington and Dr. Veronique Hermann for assistance, and Drs. Michael Fried and Rohit Pappu for helpful discussions. This work was supported by a grant to T.P.C. from the National Science Foundation (MCB-0110720). Acknowledgment is also made to the University of Kentucky Center for Computational Sciences for support of B.W.C.

References

- (1) Marcus, Y.; Ben-Naim, A. J. Chem. Phys. 1985, 83, 4744-4759.
- Makhatadze, G. I.; Clore, G. M.; Gronenborn, A. M. Nat. Struct. Biol. 1995, 2, 852-855. (2)
- (3) Stapley, B. J.; Creamer, T. P. Protein Sci. 1999, 8, 587-595.
- (4) Shi, Z.; Olson, C. A.; Rose, G. D.; Baldwin, R. L.; Kallenbach, N. R. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 9190-9195.
- (5) Ferreon, J. C.; Hilser, V. J. Protein Sci. 2003, 12, 447-457.
- (6) Eker, F.; Griebenow, K.; Schweitzer-Stenner, R. J. Am. Chem. Soc. 2003, 125. 8178-8185.
- Chellgren, B. W.; Creamer, T. P. Biochemistry 2004, 43, 5864-5869.
- Sreerama, N.; Woody, R. W. *Proteins* 1999, *36*, 400–406.
 Rucker, A. L.; Pager, C. T.; Campbell, M. N.; Qualls, J. E.; Creamer, T. (9)
- P. Proteins 2003, 52, 68-75
- (10) Poon, C.-D.; Samulski, E. T.; Weise C. F.; Weisshaar, J. C. J. Am. Chem. Soc. 2000, 122, 5642–5643.
- (11) Drozdov, A. N.; Grossfield, A. M.; Pappu, R. V. J. Am. Chem. Soc. 2004, 126, 2574-2581
- (12) Kentsis, A.; Mezei, M.; Gindin, T.; Osman, R. Proteins 2004, 55, 493-501
- (13) Mezei M.; Fleming, P. J.; Srinivasan, R.; Rose, G. D. Proteins 2004, 55, 502 - 507
- (14) Pappu, R. V.; Rose, G. D. Protein Sci. 2002, 11, 2437-2455.
- Creamer, T. P.; Campbell, M. N. Adv. Protein Chem. 2002, 62, 263-(15)282.
- (16) Brandts, J. F.; Kaplan, K. L. Biochemistry 1973, 12, 2001-2024.
- (17) MacArthur, M. W.; Thornton, J. M. J. Mol. Biol. 1991, 218, 397-412.
- (18) Woody, R. W. Adv. Biophys. Chem. 1992, 2, 37–79.
 (19) Creamer, T.P. Proteins 1998, 33, 218–226.
 (20) Rull, F. Pure Appl. Chem. 2002, 74, 1859–1870.

JA045425Q